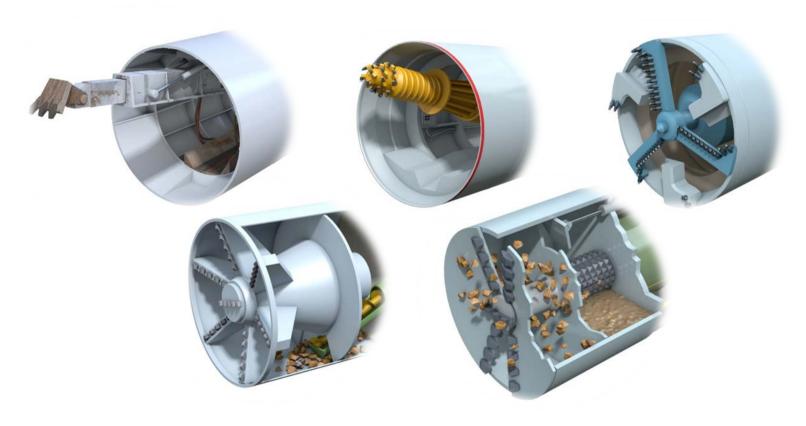
PIPE JACKING

An introduction to pipe jacking prepared by the Pipe Jacking Association

Pipe Jacking


Pipe Jacking

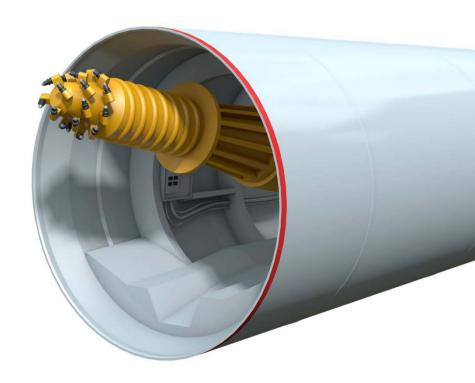
Microtunnelling


Pipe Jacking - General Arrangement

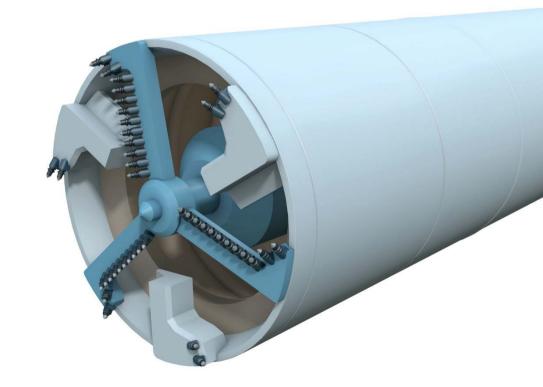
Pipe Jacking is an integrated system linking:

- soils
- jacking shafts
- pipes
- shields
- jacking loads
- engineering



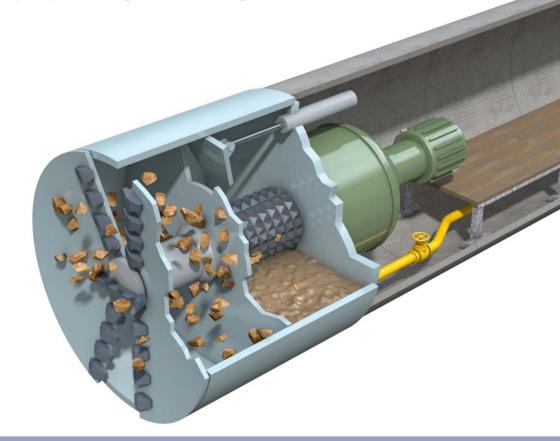

Machines are available for pipe jacking in most ground conditions

Backacters



- Backacters
- Open face cutter booms

- Backacters
- Open face cutter booms
- Tunnel boring machine

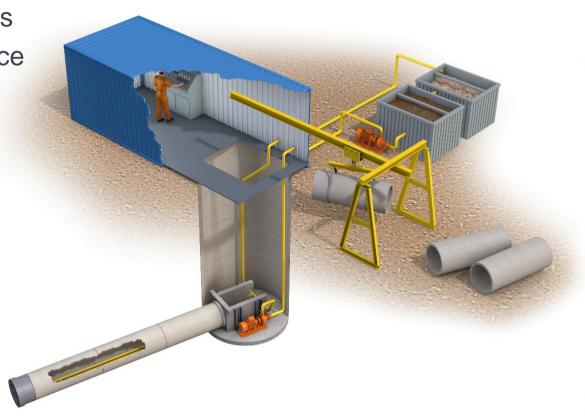


- Backacters
- Open face cutter booms
- Tunnel boring machine
- Earth pressure balance

- Backacters
- Open face cutter booms
- Tunnel boring machine
- Earth pressure balance
- Pressurised slurry

Microtunnelling

Fully guided machines


Controlled from surface

Non man entry

Two options:

Pressurised slurry

Screw auger

Benefits of Mechanisation

- Significantly safer working
- Efficient
- Hand arm vibration eliminated
- Quicker installation
- Ground support
- Remote control
- Risks mitigated

Computer Guidance

- Real-time line and level checks
- Maintains accuracy in difficult ground
- Allows remote operations

Drive Lengths, Diameter and Accuracy

Indicative jacking lengths achievable between shafts for mechanised drives, based on PJA members' experience and lengths being achieved internationally for both straight and curved drives appear below:

```
Diameter (m) <0.9 0.9 1.0 1.2 1.35 1.5 1.8 1.9 2.1 2.4
Lengths (m) 150 200 250 450 550 700 900 1000 1000 2000
```

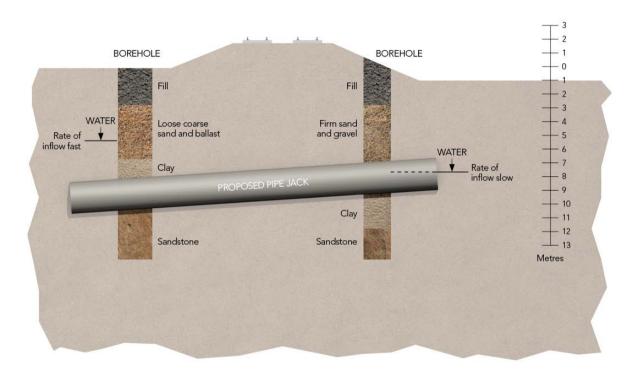
Accuracy:

In stable self-supporting homogenous ground typical tolerances for pipe installation are ± 50 mm for line and level at any point in the drive.

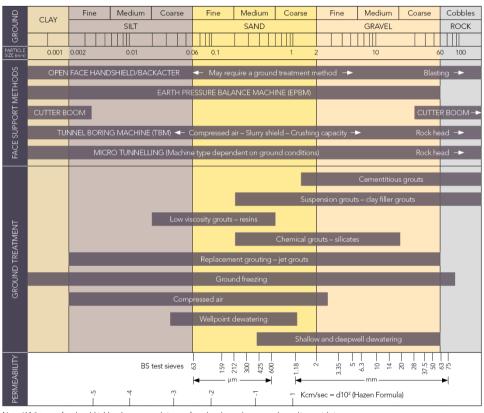
A risk analysis should be undertaken on all drives to ensure all foreseeable hazards to include access and egress of operatives and any other risks are adequately considered.

Pipe Jacking Pipes

- Concrete jacking pipes:
 BS EN 1916
- Clay pipes: BS EN 296-7 and BS EN 12899: 2000
- Installation forces are key
- Follow manufacturers recommendations
- Steel pipes: sleeves for pressure mains

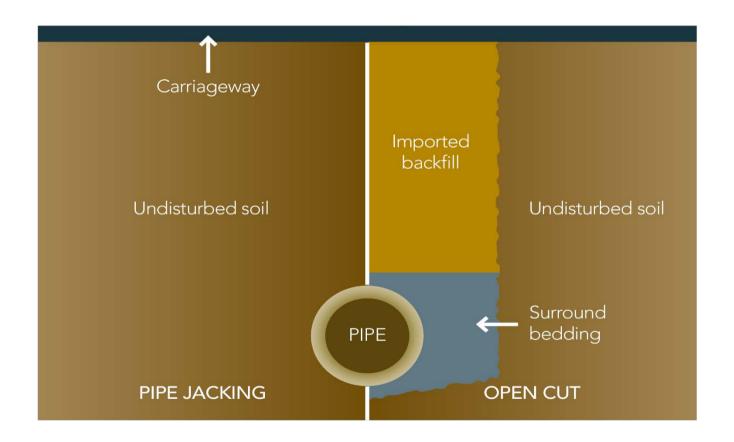


Site Investigation


Soil Conditions

TEST	Non-cohesive	Cohesive	Mixed Soils	Fill Material	Rock
Unit weight and moisture content	•	•	•	•	•
Angle of friction	•		•	•	
Particle size distribution	•	•	•	•	
Abrasivity	•	•	•	•	•
Cohesion		•	•	•	
Types and proportions of minerals	•	•	•	•	•
Standard penetration tests	•	•	•	•	
Permeability and nature of ground water flows (seasonal/tidal changes)	•		•	•	•
Toxic/hazardous constituents in the ground/groundwater	•	•	•	•	•
Frequency and physical properties of boulders, cobbles or flints	•	•	•	•	•
Pump down tests	•		•	•	•
Presence of gases				•	•
Compressive strength					•
Rock quality designation (RQD)					•
Core logging (TCR, SCR, FI)					•
Tensile strength					•
Specific energy (excavatability)					•
Slake durability					•
Geological description	•	•	•		•
Plasticity indicees (SL, PL, PI)		•	•		
Disaggregation mixing test*		•	•		
RF (x-ray fluorescence) mixing test		•	•		

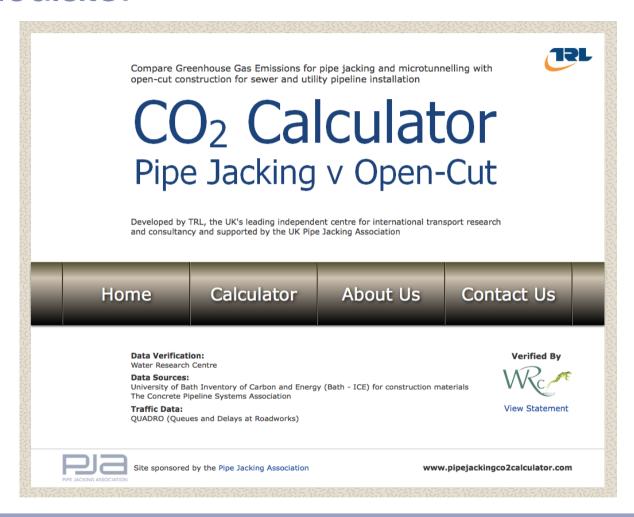
^{*}See N. S. Phillips 2016 on www.pipejacking.org/research


Tunnelling in Unstable Ground

Note: Whilst open face handshield and compressed air are referred to above, these are only used in special circumstances

Open Trench vs Pipejacking

Open Trench vs Pipejacking


Lorry Movements

	600mm ID pipeline 4m deep, 100m length		1200mm ID pipeline 4m deep, 100m length		
Aspect	Open trench	Trenchless	Open trench	Trenchless	
Excavated width	1400mm (trench width)	760mm (OD of jacking pipe)	2350mm (trench width)	1450mm (OD of jacking pipe)	
Reinstatement width	1700mm	None	2650mm	None	
Excavated volume per metre of pipeline	6.1m³	0.5m³	10.28m³	1.65m³	
Imported stone fill and coated stone per metre of pipeline	11.9 tonnes	None	18.27 tonnes	None	
Number of 20 tonne lorry loads per 100m pipeline (muck away and imported stone)	136	8	220	21	

Carbon Calculator

- Easy to use
- Options:
 - Feasibility
 - As designed
 - As built

Carbon Calculator

CO₂ Savings – 500 metres

Project Data 4m depth to invert	600mm diameter pipeline 500m length x 4m deep		1200mm diameter pipeline 500m length x 4m deep		
Method	Open cut	Pipejacking	Open cut	Pipejacking	
Tonnes CO ₂	351.4	113.3	570.6	301.8	
CO ₂ saving	238.1 tonnes = 68% saving		268.8 tonnes = 47% saving		

Project Data 6m depth to invert	600mm diameter pipeline 500m length x 6m deep		1200mm diameter pipeline 500m length x 6m deep		
Method	Open cut	Pipejacking	Open cut	Pipejacking	
Tonnes CO ₂	492.4	124.6	765.5	328.3	
CO ₂ saving	367.8 tonnes = 75% saving		437.2 tonnes = 57% saving		

Major Applications

- New sewerage and drainage construction
- Sewer replacement and lining
- Gas and water mains
- Oil pipelines
- Electricity and telecoms cable ducts
- Subways

Technical Benefits

- Inherent strength
- Smooth internal finish
- No secondary lining
- Fewer joints
- Watertight
- Inverts for combined systems
- Less settlement
- Minimal surface impact
- Fewer utility diversions

Safety Benefits

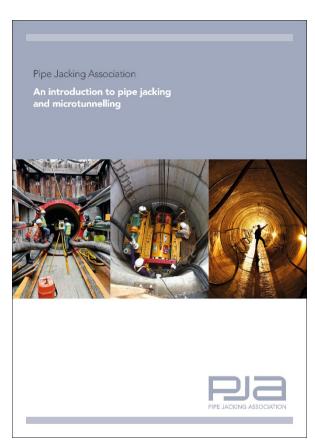
- Inherently safer method
- Quicker installation
- Reduced labour input
- Utility strikes minimised
- Public interface reduced
- Reduced confined space man hours

Sustainability:

Environmental and socio-economic benefits

- Reduces disruption
- Reduces damage to services
- Maintains highway integrity
- 90% fewer vehicle movements
- Less spoil
- Less quarried material
- Reduced CO₂ emissions
- No secondary lining
- Economic alternative to deep open cut
- Socially acceptable

Research Projects at Leading Universities


University research programme initiated in 1986 – projects include:

- Laboratory testing of model jacked pipes
- Field testing of performance of pipes
- Finite element analysis of concrete jacking pipes
- Full scale testing of concrete pipes
- Soil conditioning and lubrication materials
- Field testing of soil conditioning and lubrication methods
- Slurry management and soil disaggregation

PJA Publications and Design Advice

- Introduction to pipe jacking
- Detailed design guide
- Videos and presentations
- Preferred pipe sizes
- Case studies
- Research
- Carbon calculator
- Contractors, pipe and other suppliers
- Safety guidance
- Downloadable from website

Additional Applications

Box Sections

- Subways
- Roadways

Other uses

- Jacked arches
- Bridge slide foundations

Summary

- Engineering integrity
- Low capital costs
- Low maintenance
- Cost-effective
- Safe installation
- Environmental benefits
- Reduced CO₂ emissions
- Extensively used
- 150mm to 2.4/3m diameters
- Long drive lengths
- Straight or curved drives

www.pipejacking.org

